
 - 1 -

Experience on the Parallelization of a Cloud Modeling Code
Using Computer-Aided Tools

Haoqiang Jin and Gabriele Jost∗

NAS Division, NASA Ames Research Center, Moffett Field, CA 94035-1000,

{hjin,gjost}@nas.nasa.gov

Dan Johnson and Wei-Kuo Tao

Laboratory for Atmospheres, NASA Goddard Space Flight Center, Greenbelt, MD 20771

{djohnson,tao}@agnes.gsfc.nasa.gov

NAS Technical Report NAS-03-006, March 2003

Abstract

The purpose of the work reported on is two-fold: The optimization of large-scale earth

science applications and the evaluation of the use of automatic parallelization tools. We

have applied the CAPO computer aided parallelization tool developed at the NASA Ames

Research Center to the Goddard Cumulus Ensemble (GCE) cloud modeling code. We

describe how the tool was used for OpenMP parallelization and identification of

performance obstacles within the code. We also give performance results for a number of

different hardware platforms, discuss the results, and outline possibilities for further

optimizations in the code and improvement in the tools.

1. Introduction

The Goddard Cumulus Ensemble (GCE) code developed by Tao et. al. [9] at the NASA Goddard
Space Flight Center (GSFC) is used for modeling the evolution of clouds and cloud systems
under large-scale thermodynamic forces. The 3-dimensionsal version of this code, GCEM3D,
was chosen for this study to serve as a pilot project to evaluate the use of parallelization support
tools developed at the NASA Ames Research Center (ARC) for their use on earth science
modeling.
 Researchers at ARC have developed parallelization tools that have successfully been applied to
a number of computational fluid dynamics (CFD) codes [5]. These tools rely on in-depth source
code analysis and parallelize codes with nominal user interaction. The tool-based parallelization
process reduces code development time and user error. In the report we describe the experience

∗ Computer Sciences Corporation, NASA Contract DTTS59-99-D-00437/A618112D

 - 2 -

of using these tools to parallelize GCEM3D and to optimize the parallelized code. We include
timing comparisons for several test cases on three different machines and point out possible areas
for further improvement.

In summary, we have achieved the following goals from this work:

• The OpenMP parallel code of GCEM3D was generated in a relatively short time.

• The OpenMP code ran on different types of shared-memory parallel machines, such as
SGI Origin, SUN E10K, and Dell PC.

• We achieved a 12x speedup on 16 CPUs of an SGI O3K for a 130×66×34 test case and
scaled up to 64 CPUs for larger test cases.

• We successfully ran a large test case of 1026×1026×34 which uses more than 7GB of

memory and has not been tried before.

2. Code Description

The GCEM3D code is written Fortran 77. It contains about 18000 lines and 100 subroutines.

The code contains a limited number of SGI ‘DOACROSS’ directives for achieving additional

performance on parallel machines. With the help of the auto-parallelization option “- Mconcur ”

from the Portland Group compiler, the performance increases by a factor of 1.7 on 2 CPUs of a
PC, but the scalability is very limited beyond 4 CPUs. Besides, the format of the parallelization
directives is not portable. We will refer to this version as original in this report.

3. Parallelization Process

The task of parallelizing the GCEM3D code was performed with the CAPO [3], computer-aided
tool, which was developed at NASA Ames Research Center. CAPO utilizes the full strength of
the data dependence analysis engine from CAPTools [4], developed at the University of
Greenwich, and automatically inserts OpenMP [7] directives in Fortran programs. A
comprehensive graphical user interface built into CAPO allows a user to guide the parallelization
process to achieve high performance of the resulting code. The tool is aimed at automating the
straightforward but tedious and error prone steps of the parallelization process, allowing the user
to focus on the optimization of critical parts of the code. CAPO has successfully been used to
parallelize a number of large-scale computational fluid dynamics (CFD) codes [5]. More
information on the tool can be found in [3].

In preparation for the data dependence analysis, we noticed that a few parameters controlling
the data flow in the program were hard-coded with preset values. We added dummy READ
statements for these parameters in order to avoid dead-code elimination performed by the
dependence analysis engine. This helps to minimize changes to the original source code. The
dependence analysis took 6.2 hours of CPU time on a Sun UltraSparc 450MHz workstation.

In order to insert directives automatically into the code, CAPO must examine the loops for
potential data dependences that might prohibit parallelization. The tool, just like any compiler,

 - 3 -

has to be conservative in its assumption about data dependences. To avoid the generation of
incorrect code, data dependences have to be assumed unless proven otherwise. A very complex
code structure may inhibit tests for independence, or input parameters may be involved that are
only known at runtime. Unlike a compiler, CAPO allows the user to provide knowledge about
code structures or input parameters in order to remove unnecessary data dependences. It is the
task of the user to improve the data dependence results by pruning false data dependences, which
in turn will improve the level of parallelization. CAPO aids the user in this task by indicating the
obstacles for each loop that has not been parallelized. The user can then decide if and how to
remove these obstacles. In case of GCEM3D we used CAPO’s directive browser (see Figure 1
for a snapshot) to remove many data dependences that were assumed mainly because of implicit

EQUI VALENCE conditions existed among many common blocks. These common blocks are

used mostly as storage space for working arrays which are declared differently in different
routines. We eliminated these unnecessary dependences among these working arrays.

Figure 1: Snapshot of the CAPO graphical user interfaces for a parallelization session. The main
browser, Directives Browser, lists loops and their types in a program; the Why Directives
browser presents some detailed information on why a given loop is not parallel and indicates the
problematic variables. The user can inspect this information and enforce a particular type (such
as private) for the selected variables so that obstacles in parallelization of the loop could be
removed.

 - 4 -

The parallelization strategy used by CAPO targets outer-most loops, which, if successful,
yields coarse parallel granularity and little OpenMP overhead. In the case of GCEM3D the outer-

most loop is, in many cases, the K loop. In the cases where the K loop has data dependences, the

next level, usually the J loop, is chosen for parallelization. During the final stage of the OpenMP

code generation by CAPO, we verified that the proper loops were selected for parallelization
using the directives browser. The generated directives were then transferred back to the original
code in order to preserve the structure of the original code.

4. Parallel Code Optimization

The initial OpenMP parallel code generated by CAPO has limited performance. For example, the
improvement was only a factor of 4.2 on 16 CPUs. This is mainly due to certain structures in the
original code that prevented CAPO from performing further parallelization or selecting a better
parallelization strategy. Most of the transformations to the code structure were done by hand,
however, CAPO has been used to identify where code restructuring is required in order to
improve the performance. In the following subsections we will describe some of the key code
sections where additional optimizations were performed.

4.1. FFT

GCEM3D uses an FFT algorithm (routine SLVPI) that first applies to the X (or I) dimension and

then to the Y (or J) dimension. An efficient parallel implementation of FFT on multiple

dimensions usually contains the following two characteristics:

• proper blocking for cache size, and

• 1-D FFT inside a parallel loop.
The original code has none of the above characteristics. We adopted a method that was
implemented in the FT kernel of the NAS Parallel Benchmark ([1],[2]). The new code has the
following structure:

DO K=2, KLES

copy a slice of (I,J) block to working arrays AR and AI
CALL FFTX(AR, AI)

copy results back to the original array
END DO

The size of the working block was chosen so that the data could fit into a typical cache size. The

outer K loop was selected for parallelization with the working arrays AR and AI as local

variables. The routine FFTX performs 1-D FFT.

 - 5 -

4.2 The Radiation Code

The radiation effect is calculated in routine PRADRAT which calls routine RADRAT. There is one

call to RADRAT for loop index J = 2 and then a second call to RADRAT within a loop where loop

index J ranges from 2 to JLES. The corresponding call graph is displayed in Figure 2. It is most

efficient to parallelize the loop outside of the call to RADRAT. The CAPO directives browser

indicates two major obstacles to the parallelization of the critical loop:

• A list of array variables carrying true dependences, and

• I/O within the loop (by a call to routine FITO3).
Inspection of the arrays shows that they are 2-dimensional arrays. They are not dependent on

the parallelized dimension in J direction. For each J , they hold a 2-dimensional slice of a 3-

dimensional array. The CAPO user interface allows privatizing all of these variables and
removing the dependences. The common blocks containing the 2-dimensional arrays can be

declared as THREADPRI VATE in routine PRADRAT.

Inspection of the I/O shows that this occurs only once, to initialize certain arrays.
Parallelization of the critical loop with I/O can be forced by using the CAPO user interface, or

the call to FI TO3 can be moved outside of the parallel loop. We decided to use the second

approach (see Figure 2).

Figure 2: The call path followed by subroutine RADRAT in the original code. The branch led by

FI TO3, which contains I/O is only called once and was moved outside of the J loop in

PRADRAT so that a more efficient parallelization of the J loop can be obtained.

We removed the SAVE statements from routines PRADRAT, RADRAT, and OPT4 manually,

since a global SAVE will make all variables within a subroutine to be shared and in general

prevents parallelization.

 - 6 -

Compared to the initial CAPO generated version where many inner loops below RADRAT were

chosen for parallelization, the coarse-grained parallelization in the new version improves the

scalability of PRADRAT from 4.6 to 16.4 on 16 CPUs. This super-linear speedup reflects very

small overhead from parallelization and the increased overall cache size as the number of CPUs
increases.

The effect of outer versus inner loop level parallelization is quantified in Figure 3. The figure

shows the average time distribution across various thread states for routine PRADRAT running

with 8 threads. We categorize the states of a thread as running, idle, synchronizing, and fork/join.
When outer level parallelization is performed, we have only one parallel region. After a certain
start-up time all threads spend their time running, i.e. they do useful work. For the case of inner
loop level parallelization, there are many more parallel regions involved. The threads have to be
forked and joined at the beginning and end of these parallel regions, which results in
considerable synchronization overhead.

Time Distribution in PRADRAT

0

10

20

30

40

50

60

70

80

90

100

running idle sync fork/join

Thread States

A
ve

ra
g

e
%

 o
f

O
ve

ra
ll

T
im

e

Inner Loop
Parallelization

Outer Loop
Parallelization

Figure 3: Comparison of outer versus inner loop level parallelization for an 8-thread run.

A similar situation occurred in a less time-consuming routine PBLI N in which the routine

SFFLUX is called in a J loop. The initial version serialized this loop. In order to parallelize this

loop, the global SAVE statements in the subsequent calls along the call branch (see Figure 4) was

manually removed. CAPO was able to place the THREADPRI VATE directive for the common

blocks shared among the subroutines in the branch.

 - 7 -

4.2. Advection Calculation

In the original version a commonly used code
structure looks like:

DO J=2, JLES

 TM(I , J) =. . AK(I , J, 1)

ENDDO

DO K=2, KLES

 DO J=2, JLES

 TP(I , J) =. . AK(I , J, K)

 U(I , J, K) =. . (TM(I , J)

 – TP(I , J)) . .

 TM(I , J) =TP(I , J)

 ENDDO

ENDDO

This code works fine sequentially since the memory is efficiently reused. Due to the data usage

dependence carried by TM in the K loop, the J loop is chosen for parallelization. There are two

issues with this method: 1) more overhead is associated with the OpenMP PARALLEL DO

because the parallelization is inside the K loop, and 2) there is potential cache trashing due to the

update of smaller shared arrays TP and TM and more memory traffic. The solution is to swap the

K and J loops and pre-calculate a local variable like the following:

DO J=2, JLES

 DO K=1, KLES

 Y1K(I , K) =. . AK(I , J, K)

 ENDDO

 DO K=2, KLES

 KM=K- 1

 U(I , J, K) =. . (Y1K(I , KM) – Y1K(I , K)) . .

 ENDDO

ENDDO

The outside J loop is then parallelized and the use of Y1K as a local array improves cache

utilization and memory traffic. The timing profile has indicated the solution improves the

speedup for ADVECTU(V,W) from 5 to 10 on 16 CPUs.

The other optimization involves replacing an array element update with a scalar update in

routine ADVECT so that when the outer K loop is chosen for parallelization the cache

Figure 4: The call path followed by the

call to SFFLUX in subroutine PBLIN.

 - 8 -

invalidation caused by updating the shared variable can be reduced. An example is shown in the
following code section:

Original New
DO K=2, KLES

 DO J=2, LES

 DO I =2, I LES

 SA1(K) = SA1(K) + . .

 ENDDO

 ENDDO

ENDDO

DO K=2, KLES

 SA1_K = SA1(K)

 DO J=2, LES

 DO I =2, I LES

 SA1_K = SA1_K + . .

 ENDDO

 ENDDO

 SA1(K) = SA1_K

ENDDO

5. Discussion of Timing Results

We tested the CAPO generated OpenMP version of GCEM3D for four test cases on four types of
machines and compared with the original version. Detailed results and the test environment are
given in Appendix. We will summarize the main results in this section.

The improvement of the new
parallel code generated with CAPO
over the original version is illustrated in

Figure 5 for a 130×66×34 case on the
SGI Origin 3000. The original version
does not scale beyond 4 CPUs and the
best speedup is only 1.5 on 8 CPUs.
The CAPO version performed similarly
sequentially, but achieved a speedup of
12.4 on 16 CPUs. This is a factor of 8.2
improved over the best timing from the
original version.

As mentioned in Section 2, the
original version contains a limited
number of parallel directives relying on
automatic parallelization performed by
the compiler. Such an “auto”
parallelizing option is available in the
vendor compilers (SGI, Sun and PGI)

0

5

10

15

20

E
xe

c
T

im
e

(m
in

s)

1 2 4 8 16
Number of CPUs

1.93

3.95

7.56

12.4

1.51

Problem: 130×66×34
30 mins modeling

 Original
 CAPO version

Figure 5: Comparison of the new parallel code
(lighter bar) with the original version (darker bar)

for a (130×66×34) test case. The speedup relative
to the single CPU timing is indicated in the graph.

The timings were obtained on an SGI O3K.

 - 9 -

we tested. Automatic parallelization performed by Sun and PGI compilers does improve the
performance (see Tables 4 and 5 in Appendix) and the best result is a speedup of 2.74 on 8
CPUs. The SGI automatic parallelization, however, brought little improvement. In some cases
performance degraded. In Figure 5, we included the results from the original version compiled
without the “auto-parallelizing” option.

The fact that the original code contained large sections of sequential code, which the compiler
could not properly exploit, is illustrated by Figures 6 and 7. These figures were obtained by
running the Paraver [8] performance analysis tool. Figure 6 shows the timeline of the first few
iterations of a loop in routine PRADRAT for 8 threads. Dark shading indicates a thread running
useful user code. Light shading indicates that the thread performs “non-useful” operations such
as idling, synchronization, or fork/join operations.

Figure 6: Thread timeline for the original GCEM3D running on 8 CPUs. Dark shading indicates
useful time for a thread. Light shading indicates non-useful time. Due to the fact that large
sections of the code are not parallelized, only one of the master thread performs useful
operations while the others are idling or synchronizing.

Figure 6 shows that for a large amount of time only one thread performs useful operations, while
the remaining threads are spending their time in synchronization. This is due to the fact that

routine PRADRAT was not parallelized in the original code. Only the master thread is active for

this routine. In the CAPO-parallelized version this problem is overcome, as can be seen in Figure
7 where the dark shading indicates that now all threads are running user code.

 - 10 -

Figure 7: Thread timeline for the CAPO parallelized GCEM3D running on 8 CPUs. Similar to
Figure 6, dark shading indicates that a thread is running user code. The amount of useful time
for each thread is greatly increased after improved parallelization.

6. Future Improvements
The current OpenMP version of GCEM3D has limited scalability beyond 64 CPUs, partly due to

the outer-loop parallelization strategy used in the code. For the large case of 1026×1026×34, it

took 62 minutes to model a 10-minute result on 32 CPUs. On 64 CPUs, the time only went down
to 47 minutes. This is due the fact that the outer loop is only 34 iterations long. Clearly there is
enough work for more CPUs, but a different parallelization strategy is required in order to have
an efficient parallelization. One possibility is to use OpenMP directives on the J dimension for
larger cases. Ideally the code could be restructured such that the K dimension becomes the first
dimension and the innermost loop. This will most likely yield high performance and good
OpenMP scalability, however, it will require a lot of rewriting of the code, since tools are still
very limited in the areas of code restructuring. Support of automatic code restructuring is one of
the areas to be improved in the tools.

Other possible future work to improve the performance would be to perform domain-
decomposition (on the J dimension, for example) to create a message passing version based on
MPI [6] of the application. The MPI version has the potential for scalability not only on shared-
memory machines, but also on clusters of SMP nodes. Generating a message-passing version
will involve more manpower. It is possible to apply CAPTools to generate a message-passing
parallel code, but this requires a certain level of expertise in producing such a code.

Acknowledgements
This work was supported in part by NASA contracts NAS 2-14303 and DTTS59-99-D-
00437/A61812D with Computer Sciences Corporation/AMTI.

 - 11 -

References

[1] D. Bailey, J. Barton, T. Lasinski, and H. Simon (Eds.), “The NAS Parallel Benchmarks,”
NAS Technical Report RNR-91-002, NASA Ames Research Center, Moffett Field, CA,
1991.

[2] D. Bailey, T. Harris, W. Saphir, R. Van der Wijngaart, A. Woo, and M. Yarrow, “The NAS
Parallel Benchmarks 2.0,” NAS Technical Report NAS-95-020, NASA Ames Research
Center, Moffett Field, CA, 1995. http://www.nas.nasa.gov/Software/NPB.

[3] CAPO, http://www.nas.nasa.gov/Tools/CAPO.

[4] C.S. Ierotheou, S.P. Johnson, M. Cross, and P. Leggett, “Computer Aided Parallelisation
Tools (CAPTools) – Conceptual Overview and Performance on the Parallelisation of
Structured Mesh Codes,” Parallel Computing, 22 (1996) 163-195. http://captools.gre.ac.uk/

[5] H. Jin, M. Frumkin and J. Yan. “Automatic Generation of OpenMP Directives and Its
Application to Computational Fluid Dynamics Codes,” in Proceedings of Third

International Symposium on High Performance Computing (ISHPC2000), Tokyo, Japan,
October 16-18, 2000.

[6] MPI 1.1 Standard, http://www-unix.mcs.anl.gov/mpi/mpich.

[7] OpenMP Fortran Application Program Interface, http://www.openmp.org/

[8] Paraver, http:/www.upc.cepba.es/paraver

[9] W.-K. Tao, “Goddard Cumulus Ensemble (GCE) Model: Application for Understanding
Precipitation Processes, AMS Meteorological Monographs,” Symposium on Cloud Systems,

Hurricanes and TRMM, 2002 (in press).

 - 12 -

Appendix

This appendix summarizes the timing results of the GCEM3D OpenMP version created from the
CAPO parallelization tool. It includes results for four test cases on five different shared memory
machines.

A.1 Test conditions

The test cases and machines are summarized in Tables 1 and 2, respectively.

Table 1: Parameters used in the four test cases. The memory usage is estimated from arrays

statically allocated in common blocks, assuming REAL* 4 for the floating point numbers. The

smallest case (0) is mostly used in the code development. DT is the time step used in the tests.

 NX NY NZ DT (sec) Memory

Case 0 130 66 34 12 77MB

Case 1 258 258 34 12 440MB

Case 2 514 514 34 12 1.8GB

Case 3 1026 1026 34 12 7.1GB

Table 2: Five types of shared memory parallel machines used in the current work.

Name Type CPU, MHz L2 #Nodes #CPUs
per node

Memory
per node

lomax SGI O2K R12K, 400 8MB 256 2 768MB

crick SGI O3K R12K, 400 8MB 128 4 2GB

simak Sun E10K UltraSparc, 333 1MB 1 16 2GB

zan Dell PC PIII, 933 256KB 1 2 1GB

ibm02* IBM p690 Pwr4, 1300 1.5MB 1 32 32GB

*The IBM machine contains a 128MB L3 cache (memory buffer) for each multi-
chip module (MCM) shared among 8 CPUs.

A.2 Compilation and run-time flags

In all cases, the “OMP_NUM_THREADS” environment variable was used to control the number of

threads (or CPUs) for running a program.

On SGI Origin 2000 and 3000 running IRIX 6.5:

Compiler: SGI MIPSpro f77 compiler, version 7.3.1.2m

Compilation option: “- 64 - O3 - mp” for compiling OpenMP or SGI DOACROSS programs.

Additional option “- apo” was also used for the MIPSpro compiler to automatically

parallelize the original version in conjunction with the directives already being inserted
by hand.

 - 13 -

Run-time environment: mpt-1.4.0.2
To avoid the slave stacksize overflow due to the increased local variable sizes in Case 3,
the default stack size for the slave threads was increased by
 setenv MP_SLAVE_STACKSIZE 100000000 (to 100MB)

On Sun Enterprise 10000 running Solaris 7:

Compiler: Sun Workshop HPC f95 compiler, version 6.1

Compilation option: “- f ast - openmp” for compiling the OpenMP program. Additional

option “- aut opar ” was also used for the Sun compiler to perform automatic loop

parallelization for the original code in conjunction with those directives inserted by hand

(The DOACROSS directives were replaced by OMP PARALLEL DO).

Run-time environment: Sun Workshop for HPC
To avoid the slave stacksize overflow due to the increased local variable sizes in the large
case, the default stack size for the slave threads was increased by
 setenv STACKSIZE 16384 (to 16MB)

On Dell PC running RedHat Linux 7:

Compiler: Portland Group PGI f77, version 3.2-4

Compilation option: “- f ast - mp” for compiling the OpenMP program. Additional option

“- Mconcur ” was also used for the original code to allow the compiler to automatically

exploit additional parallelism other than those directives inserted by hand.

On IBM p690 running AIX 5:

Compiler: xlf_r, version 7.1

Compilation option: “- qnosave –O3 –qsmp=omp” for compiling the OpenMP program.

An auto-parallelization option is also available, but was not used.
To avoid the slave stacksize overflow due to the increased local variable sizes in the large
case, the default stack size for the slave threads was increased by
 setenv XLSMPOPTS stack=16000000 (to 16MB)

A.3 Timing results

The timings are wall-clock time measured from the beginning to the end of program executions,
which include the time spent in the file input/output. The results are summarized in Tables 3-5
for Case 0, Table 6 for Case 1, and Table 7 for Cases 2 and 3. The timings are reported in
minutes except for the finer time steps in Table 5.

 - 14 -

Table 3: Comparison of the original and OpenMP versions for Case 0, 30-minute simulation on

crick (SGI O3K). The original version was tested under two conditions: compiled with “ - mp”

and compiled with “ - mp –apo” . See A.2 for the description of these compilation flags. The

speedup is calculated relative to the single CPU timing.

 Original version OpenMP version

#CPUs Time (min) Speedup Time -apo Speedup Time (min) Speedup

1 17.8 1.00 18.1 1.00 17.4 1.00

2 15.5 1.15 13.9 1.30 9.0 1.93

4 12.3 1.45 12.3 1.47 4.4 3.95

8 11.8 1.51 17.1 1.06 2.3 7.56

16 12.2 1.46 22.4 0.81 1.4 12.4

32 1.2 14.1

Table 4: Comparison of the original and OpenMP versions for Case 0, 10-minute simulation on

simak (Sun E10K). The original version was tested under two conditions: compiled with “ -

openmp” and compiled with “ - openmp –aut opar ” . See A.2 for the description of these

compilation flags. The speedup is calculated relative to the single CPU timing.

 Original version OpenMP version

#CPUs Time (min) Speedup T-autopar Speedup Time (min) Speedup

1 20.1 1.00 19.5 1.00 19.3 1.00

2 14.3 1.41 12.5 1.55 9.73 1.98

4 11.7 1.72 8.54 2.28 4.98 3.87

8 10.4 1.93 7.12 2.74 2.58 7.47

12 10.1 1.99 7.84 2.48 1.99 9.70

Table 5: Detailed break-down of timings in seconds spent in typical time steps (TS) for Case 0,
30-minute simulation on zan (Dell PC). The original version was tested under two conditions:

compiled with “ - mp” and compiled with “ - mp –Mconcur ” . See A.2 for the description of

these compilation flags. The speedup is given in the last row.

 Original version OpenMP version

#CPUs 1 2 2-Mconcur 1 2

1st TS 184.6 185.0 120.3 183.8 95.8

15th TS 15.7 12.3 12.3 15.5 8.83

50th TS 94.2 93.2 60.7 93.8 48.4

per TS 6.45 4.26 3.98 6.26 3.75

Total 25.1 min 19.4 min 16.1 min 24.5 min 14.0 min

Speedup 1.00 1.29 1.56 1.00 1.75

 - 15 -

Table 6: Case 1: 10-minute simulation on lomax (SGI O2K) and simak (Sun E10K), and 30-
minute simulation on lomax. The speedup of the OpenMP code is calculated from the single
CPU timing.

 lomax, 10 mins simak, 10 mins lomax, 30 mins

#CPUs Time (min) Speedup Time (min) Speedup Time (min) Speedup

1 68.93 1.00 177.1 1.00 153.2 1.00

2 39.78 1.73 89.3 1.98 81.6 1.88

4 20.00 3.45 45.6 3.89 41.6 3.68

8 10.43 6.61 23.4 7.56 21.1 7.27

12 7.48 9.22 16.6 10.7 15.4 9.95

16 5.83 11.8 11.3 13.6

32 3.84 18.0 6.91 22.2

64 3.60 19.2 6.28 24.4

Table 7: Cases 2 and 3: 10-minute simulation on crick (SGI O3K). The speedup is calculated
relative to the 1 CPU timing for Case 2, assuming an ideal speedup of 4 on 4 CPUs for Case 3.

 crick, Case 2 crick, Case 3

#CPUs Time (min) Speedup Time (min) Speedup

1 293.0 1.00

2 153.8 1.91

4 78.98 3.71 371.3 4.00

8 42.45 6.90 195.8 7.59

12 28.75 10.2 140.3 10.6

16 23.58 12.4 100.8 14.7

32 14.27 20.6 62.05 23.9

64 12.02 24.4 46.87 31.7

Table 8: Simulations performed on the IBM machine, ibm02: 30 minutes in Case 1 and 10
minutes in Case 2. The speedup is calculated relative to the 1 CPU timings.

 ibm02, Case 1 ibm02, Case 2

#CPUs Time (min) Speedup Time (min) Speedup

1 69.04 1.00 126.57 1.00

2 34.66 1.99 63.39 2.00

4 17.45 3.96 32.19 3.93

8 8.98 7.69 16.50 7.67

12 6.33 10.91 11.51 11.00

16 4.92 14.04 8.79 14.40

32 3.07 22.49 5.15 24.58

